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Classical limit in terms of symbolic dynamics for the quantum baker’s map
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We derive a simple closed form for the matrix elements of the quantum baker’s map that shows that the map
is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give
a formal proof that the quantum baker’s map approaches a classical Bernoulli shift in the limit of a small
effective Planck’s constant.
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I. INTRODUCTION

The quantum baker’s map@1,2# is a prototypical quantum
map invented for the theoretical study of quantum cha
During the last decade, its semiclassical properties have b
studied extensively@3–8#, it has been shown to display hy
persensitivity to perturbation@9,10#, optical @11# and quan-
tum computing@12,13# realizations have been proposed,
long-time behavior has been investigated@4,7#, it has been
studied in a path-integral approach@8# and defined on a
sphere@14#. The quantum baker’s map is a quantized vers
of the classical baker’s transformation@15#, but there is no
unique quantization procedure@16#. The original definition
of the map@1,2# is based on Weyl’s quantization@17# of the
unit square. Essentially the same map has been derive
algebraic methods@18,19# as well as by considering the tran
sition from ray to wave optics@11#. Recently a whole class
of quantum baker’s maps has been defined@20# by exploiting
formal similarities between the symbolic dynamics@21# for
the classical map on the one hand and the dynamics
strings of quantum bits of the type considered in the the
of quantum computing on the other hand. This class of qu
tum baker’s maps, which can also be derived from the se
quantum maps introduced in Ref.@5#, is the subject of this
paper.

The classical baker’s transformation@15# maps the unit
square 0<q,p<1 onto itself according to

~q,p!°H ~2q, 1
2 p!, if 0<q< 1

2 ,

~2q21,1
2 ~p11!!, if 1

2 ,q<1.
~1!

This corresponds to compressing the unit square in thp
direction and stretching it in theq direction, while preserving
the area, then cutting it vertically, and finally stacking t
right part on top of the left part—in analogy to the way
baker kneads dough. The classical baker’s map, has a si
description in terms of its symbolic dynamics@21#. Each
point (q,p) is represented by a symbolic string

*Electronic address: a.soklakov@rhbnc.ac.uk
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s5•••s22s21s0 .s1s2•••, ~2!

wheresk50 or 1, and

q5 (
k51

`

sk2
2k, p5 (

k50

`

s2k2
2k21. ~3!

The action of the baker’s map on a symbolic strings is then
given by the shift map~or Bernoulli shift! U defined byUs
5s8, wheresk85sk11. This means that, at each time step, t
entire string is shifted one place to the left while the d
remains fixed. Although the relation~3! between points
(q,p) and symbolic strings is particular to the baker’s tran
formation, the method of symbolic dynamics is very gene
and can be applied to a large class of chaotic maps@21#.

Symbolic representations for thequantumbaker’s map
have been introduced in Refs.@5,12,20#. These representa
tions are all obtained by writing the quantum propagatorB̂ in
a mixed form ^ i uB̂u i 8&, where$u i &% and $u i 8&% are different
bases. In this paper, we derive a simple closed form of
matrix elements with respect to a single basis. We show
all members of the class of quantum baker’s maps define
Ref. @20# are approximate shifts in a symbolic representat
based on discrete phase space. We use this result to g
formal proof that all members of this class of quantum ba
er’s maps approach a classical Bernoulli shift in the limit
a small effective Planck’s constant.

The paper is organized as follows. In Sec. II, we give t
necessary background and definitions. In Sec. III, we s
the results of the paper and discuss their significance.
nally, Sec. IV contains the derivations and proofs.

II. BACKGROUND

Most results of this paper are phrased in terms of fin
binary strings. It will be convenient to adopt a slightly di
ferent and more flexible notation than the one used in
~2!. Here, a binary string

js: f5
defH jsjs11•••j f ~s< f !

jsjs21•••j f ~s. f !,
~4!
5108 ©2000 The American Physical Society
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PRE 61 5109CLASSICAL LIMIT IN TERMS OF SYMBOLIC . . .
wherej iP$0,1% is a bit, can have increasing (s, f ) or de-
creasing (s. f ) indices. We will use bold Greek and Lati
letters to denote binary strings, e.g.,

a5js: f or x5xh:t . ~5!

The length of a stringa will be denoted byuau; e.g., in the
above example,uau5u f 2su11. Concatenation of strings i
defined in the usual way. Again considering the above
ample,ax is the stringax5js•••j fxh•••xt . Any string a
represents a natural number through its binary expansio

a5 (
k51

uau

2uau2ka(k) , ~6!

wherea(k) denotes thek-th bit of a, 1<k<uau, such that

a5a(1)a(2)•••a(uau) . ~7!

Thus our notation does not distinguish between a bin
string and the corresponding natural number. Similarly, t
stringsa andx can be combined to represent a rational nu
ber

a.x5
def

(
k51

uau

2uau2ka(k)1 (
k51

uxu

22kx(k) . ~8!

Quantum baker’s maps are defined on theD-dimensional
Hilbert space of the quantized unit square@17#. For consis-
tency of units, we let the quantum scale on ‘‘phase space’
2p\51/D. Following Ref. @2#, we choose half-integer ei
genvalues qj5( j 1 1

2 )/D, j 50, . . . ,D21, and pk5(k
1 1

2 )/D, k50, . . . ,D21, of the discrete ‘‘position’’ and
‘‘momentum’’ operatorsq̂ and p̂, respectively, correspond
ing to antiperiodic boundary conditions. We further assu
thatD52N, which is the dimension of the Hilbert space ofN
qubits, i.e.,N two-state systems.

The D52N dimensional Hilbert space modeling the un
square can be realized as the product space ofN qubits in
such a way that

uqj&5uj1& ^ uj2& ^ •••^ ujN&, ~9!

where j 5( l 51
N j l2

N2 l , j lP$0,1%, and where each qubit ha
basis statesu0& and u1&. It follows that, written in our string
notation as binary numbers,j 5j1j2•••jN5j1:N and qj
50.j1j2•••jN150.j1:N1. We define the notation

u.j1:N&5u.j1j2•••jN&5eip/2uqj&, ~10!

which is closely analogous to Eq.~2!, where the bits to the
right of the dot specify the position variable; see Ref.@20#
for the reason for the phase shifteip/2.

Momentum and position eigenstates are related thro
the quantum Fourier transform operatorF̂ @2#, i.e., F̂uqk&
5upk&. Again in analogy to Eq.~2!, we define the notation
uj1:N .&5upk&, wherepk50.jN:11.

By applying apartial quantum Fourier transform@20# to
the position eigenstates, one obtains the family of states
-

y
o
-

e

e

h

uj1:n .jn11:N&5
def

ujn11& ^ •••^ ujN&eip(0.jn:11)

^A1/2$u0&1exp@2p i ~0.j11!#u1&%

^A1/2$u0&1exp@2p i ~0.j2j11!#u1&%

^ •••^A1/2$u0&1exp@2p i ~0.jn:11!#u1&%,

~11!

where 1<n<N21. More precisely, the stateuj1:n .jn11:N&
is obtained by applying the Fourier transform operator to
n rightmost bits of the position eigenstateu.jn11:Njn:1&. For
given n, these states form an orthogonal basis. The s
uj1:n .jn11:N& is localized in both position and momentum:
is strictly localized within a position region of width 1/2N2n,
centered at positionq50.jn11:N1, and it is crudely localized
within a momentum region of width 1/2n, centered at mo-
mentump50.jn:11.

For eachn, 1<n<N22, a quantum baker’s map can b
defined by

B̂uj1:n .jn11:N&5
def

uj1:n11 .jn12:N&, ~12!

where the dot is shifted by one position. In phase-space
guage, the mapB̂ takes a state localized at (q,p)
5(0.jn11:N1,0.jn:11) to a state localized at (q8,p8)
5(0.jn12:N1,0.jn11:11), while it stretches the state by a fa
tor of two in theq direction and squeezes it by a factor
two in thep direction. This analogy with the classical baker
map motivates calling the maps~12! ‘‘quantum baker’s
maps.’’ Forn5N21, the map is the original quantum bak
er’s map as defined in Ref.@2#, which in our notation be-
comes

B̂uj1:N21 .jN&5
def

uj1:N .&, ~13!

and forn50, the map is

B̂u.j1:N&5
def

uj1 .j2:N&. ~14!

Below we show that all the maps~12!, ~13!, ~14! reduce to
the classical baker’s map in the limit\→0.

III. RESULTS

Equation~12! is a mixed representation of the quantu
baker’s map, using different bases on both sides of the eq
tion. To go beyond the heuristic phase-space interpretatio
the map given at the end of the last section, we need
express the matrix elements ofB̂ with respect to a single
basis, i.e., we need to find

C1st~j0,j1!

5
defH ^.j1:N

1 uB̂u.j1:N
0 & if n50

^j1:n
1 .jn11:N

1 uB̂uj1:n
0 .jn11:N

0 & if 1<n<N21,
~15!
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wherej05j1:N
0 andj15j1:N

1 . A main result of this paper is
the following simple formula, which will be proved in Se
IV:

C1st~j0,j1!5F~j1
0 ,jN

1 !
d~jn12:N

0 2jn11:N21
1 !

2n11 sin@p~0.jn11:1
0 120.jn:1

1 1!#
,

~16!

where 1<n<N22 andF is a phase factor given by

F~j1
0 ,jN

1 !5
1

A2
@ i ~21!jN

1
2~21!j1

0
#. ~17!

For the casen50, one obtains

C1st~j0,j1!5
12 i

2
d~j2:N

0 2j1:N21
1 !ei ~p/2!uj1

0
2jN

1 u, ~18!

and forn5N21,

C1st~j0,j1!5
F~j1

0 ,jN
1 !

2N sin@p~0.jN:1
0 120.jN21:1

1 1!#
. ~19!

The coefficientsC1st(j0,j1) given in ~16! are zero unless
jn12:N

0 5jn11:N21
1 , i.e., unless the position bitsjn11:N21

1 of
the final state are obtained by shifting the corresponding
sition bits of the initial state. Furthermore, the sin term in t
denominator ensures thatC1st is strongly peaked forjn11:2

0

5jn:1
1 , i.e., if the momentum bitsjn:1

1 of the final state are
obtained by shifting the corresponding momentum bits of
initial state. The formula~16! therefore establishes rigor
ously that the maps~12! are approximate shift maps, a resu
which had been obtained numerically in Ref.@5#.

To formulate the question of the classical limit of th
baker’s map, we use the concept of coarse-graining in
spirit of the consistent~or decoherent! histories approach
@22–24#. For this, we introduce projectors on subspaces c
responding to symbolic stringsy of length l. We fix in ad-
vance an upper limit,kmax, on the number of iterations,k,
considered; this is necessary because in computing the
sical limit of a chaotic map, the limit\522(N11)/p→0 has
to be taken before the limitk→` @25#. We will show that,
for given l andkmax, it is always possible to choose\ in such
a way that the coarse-grained quantum dynamics is a
trarily close to a shift of the stringy. In contrast to the ap-
proach of Refs.@18,19#, in taking the limit\→0, we always
remain in the finite-dimensional Hilbert space on which o
maps are defined.

As before, we are considering basis states of the fo
uj1:n .jn11:N&. As we letN increase, the number of positio
bits to the right of the dot,m5N2n, remains fixed. We
definer 5N2 l as the number of bits ignored in the coar
graining. In the following, we always assume thatk<kmax
,r.

We are now in a position to introduce a family of proje
tors
o-

e

e

r-

as-

i-

r

m

Py
r ,k5

def5
(

uxu5r 2k,ugu5k
uxy1.y2g&^xy1.y2gu if k,m

(
uxu5r 2k,ug2u5m

ug1u5k2m

uxyg1.g2^xyg1.g2u if k>m,

~20!

wherey1y25y anduy2u5m2k. By normalizing these projec
tors, we obtain a family of uniform density matrices,

rk5
def

22r Py
r ,k . ~21!

A classical shift acts on these states as

rk°rk11 . ~22!

Projecting a staterk8 onto the shifted subspacePy
r ,k gives the

characteristic delta distribution

Tr@Py
r ,krk8#5dkk8 . ~23!

We will prove that

Tr@Py
r ,kB̂kr0~B̂†!k#512oS r

2r 2kD ~24!

or, sincek is bounded from above bykmax, and r 5N2 l ,
wherel is fixed,

Tr@Py
r ,kB̂kr0~B̂†!k#512oS N

2ND 512o~\ log\!. ~25!

Comparing Eqs.~23! and ~25!, one sees that the coars
grained quantum evolution approaches the shift-map beh
ior to any required accuracy as\→0. A measurement of the
projectorsPy

r ,k can be interpreted as a measurement in wh
the r 2k leftmost bits and thek rightmost bits of the sym-
bolic string are not resolved.

Equation~24! can be rewritten as

22r (
uxu5r

Tr@Py
r ,kB̂kuxy1.y2&^xy1.y2u~B̂†!k#512oS r

2r 2kD ,

~26!

which is a sum of 2r terms bounded from above as

Tr@Py
r ,kB̂kuxy1.y2&^xy1.y2u~B̂†!k#<1. ~27!

Here,y1y25y anduy2u5m as before. Equations~26! and~27!
can be both satisfied only if the condition

Tr@Py
r ,kB̂kuxy1.y2&^xy1.y2u~B̂†!k#512oS r

2r 2kD ~28!

holds for allx except for a fraction of orderr /2r 2k, i.e., for
all basis statesuj1:n .jn11:N& except for an exponentially
small fraction. In other words, the property~28! holds for
typical basis states.



ha

te

2.
m
l-

he
an
e

f
m to
r’s

e

sed

t

es

PRE 61 5111CLASSICAL LIMIT IN TERMS OF SYMBOLIC . . .
An interesting feature of the quantum baker’s map is t
there are atypical basis states for which Eq.~28! does not
hold. In Sec. IV we give an example of an atypical sta
uxatypy1.y2& for which

Tr@Py
r ,1B̂uxatypy1.y2&^xatypy1.y2uB̂†#

5
p218G

2p2
1o~4r 2n!1o~22r !, ~29!

where G.0.915965 is Catalan’s constant@26#. For suffi-
ciently largen2r and r, this expression is less than 0.87
This is an example where the quantum evolution in the li
\→0 differs substantially from the classical evolution, a
ready after the first iteration of the map. If, however, t
initial state is a mixture in which atypical states have
exponentially small weight, such asr0, the correspondenc
principle is obeyed.

IV. DERIVATIONS AND PROOFS

A. First iteration

In this section we prove the formula~16! for the matrix
elementsC1st(j0,j1). Equation~19! for the casen5N21
follows from almost identical arguments, and Eq.~18! for
n50 is essentially trivial. A direct calculation yields

C1st~j0,j1!

5d~jn12
0 2jn11

1 !d~jn13
0 2jn12

1 !•••d~jN
0 2jN21

1 !

3A1/2$d~jN
0 !1d~jN

0 21!exp@2p i ~0.j1
01!#%

3exp$ ip~0.jn11:1
0 120.jn:1

1 1!%

31/2@11exp$2p i ~0.j2
0j1

0120.j1
11!%#

3•••1/2@11exp$2p i ~0.jn11:1
0 120.jn:1

1 1!%#. ~30!

Using the identity 11eif52eif/2 cos(f/2) and noticing that
d(jN

1 )1d(jN
1 21)exp@2pi(0.j1

01)#5exp@ipjN
1(j1

011/2)#, we
have

C1st~j0,j1!

5A1/2exp@ ipjN
1 ~j1

011/2!#d~jn12:N
0 2jn11:N21

1 !

3exp@ ip~0.jn11:1
0 120.jn:1

1 1!#

3 )
k52

n11

cos@p~0.jk:1
0 120.jk21:1

1 1!#

3 )
k52

n11

exp@ ip~0.jk:1
0 120.jk21:1

1 1!#

5A1/2exp@ ipjN
1 ~j1

011/2!#d~jn12:N
0 2jn11:N21

1 !

3eifnS )
k51

n

cosfkD S )
k51

n

eifkD , ~31!

where
t

it

fk5
def

p~0.jk11:1
0 120.jk:1

1 1!. ~32!

To simplify Eq. ~31!, we first consider the products o
cosines and exponents separately and then combine the
formulate the final result for the first iteration of the bake
map. Note that

2fk5p~0.jk:1
0 120.jk21:1

1 1!1p~jk11
0 2jk

1!

5fk211p~jk11
0 2jk

1!, ~33!

so

cosfk215cos@2fk1p~jk
12jk11

0 !#

5~21!jk
1
2jk11

0
cos~2fk!, k<n. ~34!

From Eq. ~33!, we have 2fk54fk11 ~mod 2p) and thus
2fk52n112kfn ~mod 2p), so the previous formula can b
rewritten as

cosfk5~21!jk11
1

2jk12
0

cos~2n2kfn!, k<n21. ~35!

Using this formula the product of cosines can be expres
as

)
k51

n

cosfk5cosfn)
k51

n21

cosfk

5~21!s(j2:n
1 )2s(j3:n11

0 ))
k51

n

cos@22k~2nfn!#,

~36!

wheres(jk:n)5
def

(s5k
n js . It is easy to check by induction tha

)
k50

n21

cos 2kx5
sin 2nx

2nsinx
, xÞp j , j 50,61,62, . . . .

~37!

In our case

)
k51

n

cos@22k~2nfn!#5
sin~2nfn!

2n sinfn

. ~38!

Putting everything together, the product of cosines becom

)
k51

n

cosfk5~21!s(j2:n
1 )2s(j3:n11

0 )
sin~2nfn!

2n sinfn

, ~39!

where fn5p(0.jn11:1
0 120.jn:1

1 1). Now we simplify the
product of exponents in~31!. Equation~33! implies

fn2k52kfn1(
s51

k

2k2sp~jn112s
1 2jn122s

0 !, k>1,

~40!

so
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(
k51

n

fk5fn1 (
k51

n21

fn2k

5fn(
k50

n21

2k1 (
k51

n21

(
s51

k

2k2sp~jn112s
1 2jn122s

0 !

5Ffn~2n21!1 (
k51

n21

p~jn112k
1 2jn122k

0 !G ~mod 2p!

5$fn~2n21!1p@s~j2:n
1 !2s~j3:n11

0 !#%~mod 2p!.

~41!

The product of exponents is thus given by

)
k51

n

eifk5expS i (
k51

n

fkD
5~21!s(j2:n

1 )2s(j3:n11
0 )

exp~ i2nfn!

exp~ ifn!
. ~42!

Using ~39! and ~42! one can rewrite~31! as

C1st~j0,j1!5
~21!jN

1 (j1
0
11/2)

2n11/2
d~jn12:N

0 2jn11:N21
1 !

3
sin~2nfn!

sinfn
exp~ i2nfn!. ~43!

Further simplification is possible due to the fact that 2nfn

52p(0.j2
0j1

0120.j1
11) ~mod 2p). The final result is

C1st~j0,j1!5F~j1
0 ,jN

1 !
d~jn12:N

0 2jn11:N21
1 !

2n11 sin@p~0.jn11:1
0 120.jn:1

1 1!#
,

~44!

where the phase factorF is given by

F~j1
0 ,jN

1 !5A2eipjN
1 (j1

0
11/2) sin~2nfn!exp~ i2nfn!

5
1

A2
@ i ~21!jN

1
2~21!j1

0
#. ~45!

This formula is an exact expression for the matrix eleme
~15! of the quantum baker’s map.

B. kth iteration

In this section we prove that for allk<kmax,

Tr@Py
r ,kB̂kr0~B̂†!k#512oS r

2r 2kD , ~46!

where the projectorsPy
r ,k and the density operatorsr j are

defined in Eqs.~20! and ~21!. The first step is to prove tha

Tr@Py
r ,kB̂rk21B̂†#512oS r

2r 2kD . ~47!

By a direct calculation, we obtain
ts

Tr@Py
r ,kB̂rk21B̂†#

52k2r (
uau5r 2k11

ubu5r 2k

u2n11 sin@22(n2r 1k)p~0.a120.b1!#u22

>
4

p22r 2k (
u50

2r 2k1121

(
v50

2r 2k21

~2u24v21!22, ~48!

where the inequality sin2 x<x was used. LetL5r 2k, and let
Q(s) be the number of different pairs (u,v), 0<u,2L11,
0<v,2L, for which u22v5s. It follows that

(
u50

2r 2k1121

(
v50

2r 2k21

~2u24v21!22

5 (
s522(2L21)

2L1121

Q~s!~2s21!22

5 (
s51

2L1121
Q~s!1Q~12s!

~2s21!2
. ~49!

Using a simple counting argument based on the register p
ciple @28#, one can show that

Q~s!1Q~12s!52L112s1
1

2
@12~21!s#, ~50!

from which one obtains

(
s51

2L1121
Q~s!1Q~12s!

~2s21!2
5 (

s51

2L21
2L112s

~2s21!2
2 (

t51

2L21

~4t21!22

52LFp22oS L

2LD G , ~51!

where we have used the relations

(
s51

2L

~2s21!225
p2

8
1o~22L!, 22L(

s51

2L

1

2s21
5oS L

2LD .

~52!

Combining Eqs.~48!, ~49! and ~51!, we obtain Eq.~47! as
required. We now rewrite Eq.~47! in the symmetric form

Tr@rkB̂rk21B̂†#522rF12oS r

2r 2kD G ~53!

and introduce the distance measure between density mat
induced by the Eucledian norm@27#,

d~r,r8!5
def

ATr~r2r8!2. ~54!

This distance measure is unitarily invariant and obeys
triangle inequality. We will now prove that~53! and ~54!
imply

d~rk ,B̂kr0@B̂†#k!5o~2k/22rAr !. ~55!
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Using the cyclic property of the trace, we have

d~rk ,B̂rk21B̂†!5ATr rk
21Tr rk21

2 22 Tr~rkB̂rk21B̂†!.
~56!

Since Trrk
252r /22r522r for any k,

@d~rkB̂rk21B̂†!#2522r 1122 Tr~rkB̂rk21B̂†!, ~57!

which, together with Eq.~53!, implies

d~rk ,B̂rk21B̂†!5o~2k/22rAr !. ~58!

The casek51 of ~55! follows directly from~58!. Assuming
that ~55! is true for a given value ofk and using the unitary
invariance of the distance~54!, we have

d~B̂rkB̂
†,B̂k11r0@B̂†#k11!5o~2k/22rAr !. ~59!

Substitutingk11 for k in Eq. ~58!, we get

d~rk11 ,B̂rkB̂
†!5o~2~k11!/22rAr !. ~60!

Using the triangle inequality for the distance measure~54!, it
follows from ~59! and ~60! that

d~rk11 ,B̂k11r0@B̂†#k11!5o~2k/22rAr !1o~2~k11!/22rAr !

5o~2~k11!/22rAr !. ~61!

By induction, this completes the proof of~55! for any k
<kmax. On the other hand

d~rk ,B̂kr0@B̂†#k!5ATr rk
21Tr r0

222 Tr~rkB̂
kr0@B̂†#k!,

~62!

hence using Eq.~55! it follows that

A212r22 Tr~rkB̂
kr0@B̂†#k!5o~2k/22rAr !, ~63!

and finally

Tr~rkB̂
kr0@B̂†#k!522rF12oS r

2r 2kD G , ~64!

which is equivalent to~46! as required.

C. Atypical initial states

In this section, we show that the stateu0ry1.y2&, where 0r

is a string ofr zeros, is an atypical state in the sense of
discussion at the end of Sec. III, i.e., we show that the s
u0ry1.y2& satisfies Eq.~29!. A direct calculation gives
e
te

Tr@Py
r ,1B̂u0ry1.y2&^0ry1.y2uB̂†#

5 (
uxu5r 21

(
g50

1

uC1st~0ry1y2,xy1y2g!u2

5
8

p2 (
v50

2r 2121
11o~4r 2n!

~4v11!2
. ~65!

Substitutingt52v, we have

Tr@Py
r ,1B̂u0ry1.y2&^0ry1.y2uB̂†#

5
81o~4r 2n!

p2 (
t50

2r

11~21! t

2~2t11!2

5
41o~4r 2n!

p2 S (
s51

2r11

~2s21!221(
t50

2r

~21! t

~2t11!2D .

~66!

Using Eq. ~52! and the series representation of Catala
constantG.0.915965@26#,

G5(
t50

`
~21! t

~2t11!2
, ~67!

it follows that

Tr@Py
r ,1B̂u0ry1.y2&^0ry1.y2uB̂†#

5
p218G

2p2
1o~4r 2n!1o~22r !

.0.8711o~4r 2n!1o~22r !. ~68!

Since one can treatn2r andr as independent variables, th
expression can be made smaller than 0.872 by choosinn
2r and r large enough. For the initial stateu0ry1.y2&, the
asymptotic relation~28! is thus violated.
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