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Classical limit in terms of symbolic dynamics for the quantum baker’'s map
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We derive a simple closed form for the matrix elements of the quantum baker’'s map that shows that the map
is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give
a formal proof that the quantum baker's map approaches a classical Bernoulli shift in the limit of a small
effective Planck’s constant.

PACS numbes): 05.45—a

. INTRODUCTION S=- S 5 1S0.8Sy -, 2)

The quantum baker's mdg,2] is a prototypical quantum
map invented for the theoretical study of quantum chaos.
During the last decade, its semiclassical properties have been " "
studied extensively3—§|, it has been shown to display hy- ~S g2k p=3 5k-1
persensitivity to perturbatiof®,10|, optical[11] and quan- a= ke 5 P= Sk :
tum computing[12,13 realizations have been proposed, its
long-time behavior has been investigafdd?], it has been
studied in a path-integral approa¢B] and defined on a
spherd14]. The quantum baker’'s map is a quantized versio
of the classical baker’s transformatioh5], but there is no
unique quantization proceduf&6]. The original definition

wheres,=0 or 1, and

()

The action of the baker’s map on a symbolic strinig then
rrqlven by the shift magor Bernoulli shify U defined byUs

s’, wheres, =s, ;. This means that, at each time step, the
entire string is shifted one place to the left while the dot

of the map[1,2] is based on Weyl's quantizatiqi 7] of the remains_ fixed. A!thou_gh the reIgtio(B) between Qoints
unit square. Essentially the same map has been derived t§ ,P) and symbolic strings is particular to the baker's trans-
algebraic methodgl 8,19 as well as by considering the tran- rmation, the mgthod of symholic dynamics IS very general
sition from ray to wave opticfl1]. Recently a whole class and can b? applied to allarge class of chaotic nia,m};

of quantum baker’s maps has been defif24] by exploiting Symbolic representations for thguantumbaker's map
formal similarities between the symbolic dynam[&i] for have been introduced in Reft5,12,20. These representa-
the classical map on the one hand and the dynamics dions are all obtained by writing the quantum propag#tdn
strings of quantum bits of the type considered in the theory mixedform (i|B|i’), where{]i)} and{|i’)} are different

of quantum computing on the other hand. This class of quanbases. In this paper, we derive a simple closed form of the
tum baker’s maps, which can also be derived from the semimatrix elements with respect to a single basis. We show that
quantum maps introduced in R¢B], is the subject of this all members of the class of quantum baker's maps defined in

paper. Ref.[20] are approximate shifts in a symbolic representation
The classical baker's transformati¢®5] maps the unit based on discrete phase space. We use this result to give a
square B=q,p=<1 onto itself according to formal proof that all members of this class of quantum bak-

er's maps approach a classical Bernoulli shift in the limit of
N ) N a small effective Planck’s constant.

(20,2 p), if0<qg=3, The paper is organized as follows. In Sec. I, we give the
(29-14(p+1)), if 1<q 1) necessary background and definitions. In Sec. Ill, we state

' ' the results of the paper and discuss their significance. Fi-
nally, Sec. IV contains the derivations and proofs.
This corresponds to compressing the unit square inpthe
direction and stretching it in thgdirection, while preserving
the area, then cutting it vertically, and finally stacking the
right part on top of the left part—in analogy to the way a  Most results of this paper are phrased in terms of finite
baker kneads dough. The classical baker’'s map, has a simpnary strings. It will be convenient to adopt a slightly dif-
description in terms of its symbolic dynami¢21]. Each  ferent and more flexible notation than the one used in Eq.
point (q,p) is represented by a symbolic string (2). Here, a binary string

(q,p)—

II. BACKGROUND

def -
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where & €{0,1} is a bit, can have increasing<f) or de- def
creasing ¢>f) indices. We will use bold Greek and Latin |&;.,.&, 1.0) =& 1)@ - ®|§N>eiﬂ(0-§n;11)

letters to denote binary strings, e.g.,
®\1/2{|0) +exy{ 2i(0.£,1)]/1)}

a=Eqf OF X=X ®) ®1/2{[0) +exd 2i (0.6,¢:1)]|1)}

The length of a stringr will be denoted by af; e.g., in the ® - @ \1/2{|0)+exg 2mi (0.£,11)]|1)},
above example,a|=|f—s|+ 1. Concatenation of strings is '

defined in the usual way. Again considering the above ex- (12)

ample, ax is the stringax=¢£&g- - - £iX- - - X . Any string @

represents a natural number through its binary expansion where I=n<N—1. More precisely, the stalé,.,.{n: 1)

is obtained by applying the Fourier transform operator to the

P n rightmost bits of the position eigenstdteé, , .n&n.1). FoOr
=E olal—k 6 given n, these states form an orthogonal basis. The state
a Q) (6) . > e ;
k=1 |€1:n-Ens1on) IS localized in both position and momentum: it

is strictly localized within a position region of width 12",
where ay,, denotes thé-th bit of @, 1<k=<|a|, such that centered at position=0.£,, 1.n1, and it is crudely localized
within @ momentum region of width 172 centered at mo-
A= q1)&(2)" ** Q|q]) - (7) mentump=0.§n:11.
For eachn, 1=n<N-2, a quantum baker's map can be
Thus our notation does not distinguish between a binarylefined by
string and the corresponding natural number. Similarly, two

stringsa andx can be combined to represent a rational num- . def
ber B|€:1:n -§n+l:N>:|§1:n+1-§n+2:N>v (12
def |l | where the dot is shifted by one position. In phase-space lan-
ax=, 2l Kag+ > 274 . (8) guage, the mapB takes a state localized atq,p)
k=1 k=1

=(0.6,11n1,04,11) to a state localized atq(,p’)
, , ) ) =(0.£542n1,0£,41.11), While it stretches the state by a fac-
_Quantum baker's maps are defined on Eheimensional 4 of two in theq direction and squeezes it by a factor of
Hilbert space of the quantized unit squal&]. For consis- g in thep direction. This analogy with the classical baker’s
tency of units, we let the quantum scale on “phase space” bgyan motivates calling the mapd2) “quantum baker's
271 =1/D. Following Ref.[2], we choose half-integer ei- maps.” Forn=N—1, the map is the original quantum bak-

genvalues q; = (] +2)/D, j=0,...D-1, and p=(K  ers map as defined in Ref2], which in our notation be-
+3)/D, k=0,... D—1, of the discrete “position” and -gmes

“momentum” operatorsq and p, respectively, correspond-

ing to antiperiodic boundary conditions. We further assume R def

thatD =2V, which is the dimension of the Hilbert spaceNof Bléin-1-én)=1é1n ), (13

qubits, i.e.,N two-state systems. .
The D=2N dimensional Hilbert space modeling the unit and forn=0, the map is
square can be realized as the product spacl qfibits in

such a way that . def
Bl.&1n) =11 2n)- (14

Below we show that all the mafd42), (13), (14) reduce to
the classical baker’'s map in the linit—0.

laj)=[£) €)@ - - - ®&y), 9

wherej=3 £2V7" ¢e{0,1}, and where each qubit has
basis statef)) and|1). It follows that, written in our string

notation as binary numberg,=§;£&,---éy=¢1.y and q; Il RESULTS
=0.£:8,- - - §n1=0.£,.n1. We define the notation Equation(12) is a mixed representation of the quantum
- baker’'s map, using different bases on both sides of the equa-
|.én)=1.E16- - - En)=€"T7q), (10 tion. To go beyond the heuristic phase-space interpretation of

the map given at the end of the last section, we need to

express the matrix elements Bf with respect to a single
basis, i.e., we need to find

which is closely analogous to E€R), where the bits to the
right of the dot specify the position variable; see He]
for the reason for the phase shift?.

Momentum and position eigenstates are related through;lst(go,gl)

the quantum Fourier transform operater[2], i.e., F|qy)

=|py)- Again in analogy to Eq(2), we define the notation ger( (.1 |B[.£2,) if n=0
|&1:n-) =[Pk}, wherep,=0.6y.11. = ll'N 1 l'NA o .o :
By applying apartial quantum Fourier transforf20] to (&1n-EnrinlBléln Enarny IFLsnsN-1,

the position eigenstates, one obtains the family of states (15
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whereg=¢£9. and &= ¢1.,,. A main result of this paper is
the following simple formula, which will be proved in Sec.

V:

5(§2+2:N_ §#+1:N—l)

2"t sif 7(0.8°,,.,1-0.£5,1)]
(16)

CI(&L, &)= (&), &)

where I=n<=N-2 and® is a phase factor given by

1

D&, éh)= ﬁ[i(—l)’fh—(—lﬁ?]. 17

For the casen=0, one obtains
1 1 1-i 0 1 i(m/2)] - &k
CHe e ):Té(gzzN_gl:N—ﬂel(w la—&l (19

and forn=N—-1,

(0,80
2N sin 7(0.£%.,1-0.85_1.,1)]

Ccle(e. &= (19)

The coefficientsC1S(&°, &) given in (16) are zero unless
&, =& 1.n_1, i€, unless the position bitg, ;.\, of

the final state are obtained by shifting the corresponding po-
sition bits of the initial state. Furthermore, the sin term in the

denominator ensures th@tst is strongly peaked fo£l, ; .,
=¢L,, i.e., if the momentum bitg:., of the final state are
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2 IYRYOOYYPIif k<m
st IX=r Folal=k
rk__
Py = , . (20
> xyg".g*(xyg". ¢ if k=m
IX|=r—k|g?=m '
lg'{=k-m

wherey'y?=y and|y?| = m—k. By normalizing these projec-
tors, we obtain a family of uniform density matrices,

def

p=2""Py . (21)
A classical shift acts on these states as
PR Pk+1- (22

Projecting a statp,: onto the shifted subspatl?l%‘;k gives the
characteristic delta distribution
TPy o 1= S - (23

We will prove that

T Py B*po(BT) = 1—0( er_k) (24)

or, sincek is bounded from above bi,.., andr=N-—1,
wherel is fixed,

T rkpk RT\k1— N —
TPy B po(B")*]=1~0 on =1-o(flogh). (25

obtained by shifting the corresponding momentum bits of theComparing Eqs.(23) and (25), one sees that the coarse-
initial state. The formula(16) therefore establishes rigor- grained quantum evolution approaches the shift-map behav-
ously that the map&l2) are approximate shift maps, a result ior to any required accuracy @#s—0. A measurement of the
which had been obtained numerically in RES]. projectorsP;'k can be interpreted as a measurement in which

To formulate the question of the classical limit of the the r —k leftmost bits and the rightmost bits of the sym-
baker's map, we use the concept of coarse-graining in thgolic string are not resolved.

spirit of the consistenfor decoherent histories approach

Equation(24) can be rewritten as

[22—-24. For this, we introduce projectors on subspaces cor-

responding to symbolic stringg of lengthl. We fix in ad-
vance an upper limitk,ax, On the number of iterationg,

considered; this is necessary because in computing the clas-

2—[’

r
2r7k !

T P;,‘kBk|xy1.y2><xy1.y2|(IABT)"] =1- o(

|x|=r

sical limit of a chaotic map, the limi=2"N"1/7—0 has (26)
to b‘? taken before _the limk — o [25.]' We will ShO.W that, which is a sum of 2terms bounded from above as

for givenl andk,,,y, it is always possible to choodein such

a way that the coarse-grained quantum dynamics is arbi- FKAKI o1 1 K

trarily close to a shift of the string. In contrast to the ap- T Py B xy".y?)(xy".y?| (BN ]=1. (27)

proach of Refs[18,19, in taking the limitA—0, we always
remain in the finite-dimensional Hilbert space on which our
maps are defined.

As before, we are considering basis states of the form
|€1:n-Enr1n)- As we letN increase, the number of position
bits to the right of the dotm=N-n, remains fixed. We
definer=N—1 as the number of bits ignored in the coarse
graining. In the following, we always assume thatk,.,  holds for allx except for a fraction of order/2' ¥, i.e., for
<r. all basis stategé;.,.&,.1.n) €xcept for an exponentially

We are now in a position to introduce a family of projec- small fraction. In other words, the propertg8) holds for
tors typical basis states.

Here,y'y?=y and|y?| =m as before. Equation@6) and(27)
can be both satisfied only if the condition

r

Tr[P;'kBklxyl.yz><xy1.y2|(WJ=1—0( > k) @8
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An interesting feature of the quantum baker's map is that

there are atypical basis states for which E28) does not
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def

dy=(0.£0,1.11—0.£¢,1). (32)

hold. In Sec. IV we give an example of an atypical state

[x3At y2) for which

TPy B YA y2) (et 28]

B m°+8G
- 2

+0(4""M+0(27"), (29

2

where G=0.915965 is Catalan’s constaf®6]. For suffi-

To simplify Eqg. (31), we first consider the products of
cosines and exponents separately and then combine them to
formulate the final result for the first iteration of the baker’s
map. Note that

2 =m(0.£0,1- 08¢ 14 1)+ (£ 1~ &)

= 1t m(Eni1— &), (33

ciently largen—r andr, this expression is less than 0.872. o
This is an example where the quantum evolution in the limit
h—0 differs substantially from the classical evolution, al-
ready after the first iteration of the map. If, however, the
initial state is a mixture in which atypical states have an

COSy_1=C0$ 2+ m(Er—En.1)]

= (—1)4 &r1c0926), k=n.

exponentially small weight, such ag, the correspondence
principle is obeyed.
IV. DERIVATIONS AND PROOFS

A. First iteration

In this section we prove the formuld6) for the matrix
elementsC*S{(&°, £). Equation(19) for the casen=N—1
follows from almost identical arguments, and E48) for
n=0 is essentially trivial. A direct calculation yields

CH(&, €Y

= 8(éps o= Env 1) O(Ena—Enva) - - SER— N )
XNL2{8(63) + (&3~ Dex 2i (0.691) 1}
xexpli m(0.£n, 111~ 0604 1)}
X1/ 1+exp(2mi(0.£9£91—0.£11)}]

X1 1+exp{2mi(0.£9,,.,1-0.£,1)}]. (30

Using the identity 1 e'?=2e'#2cos(#/2) and noticing that

S(&r) + 8(&x— 1)exd2mi(0.£91) 1= exdim&(8+1/2)], we
have

CH(&. €Y

= \12exfi m&(E3+112)16(£2, pn— € 1n1)
xexgim(0.£n, 1.1 0.6141)]

n+1

X k];[2 co§ m(0.£0,1—0.£¢_1.,1)]
n+1
X kljz exgim(0.£0,1- 0.4 1.,1)]
= V12exgi mén(E3+ 1D T8(En s o= Ensan-1)

T cosé (H ¢)
k=1 k=1

x @l Pn

(31

where

From Eg.(33), we have 2,=4¢,,, (mod 277) and thus
2¢=2""1"Kgp, (mod 27), so the previous formula can be
rewritten as

C03¢k:(—1)§]k-+17§(12+200$2n7k¢n), ksn—1. (35)

Using this formula the product of cosines can be expressed
as

n n—1
IT cos¢y=cose, 11 cosey
k=1 k=1
n
= (- 1)~ En ) [T cog2= 2"y,
k=1

(36)

def
whereo(&.n) = 2o_&s . Itis easy to check by induction that

n-t sin 2"x
IT cosZx= . X#mj, j=0,51,%2,... .
=0 "sinx
(37)
In our case
n .
_ sin(2" )
[I cog2  2"¢n)]= ——". (38)
k=1 2"sin ¢,

Putting everything together, the product of cosines becomes

- .
[] sin(2"
COSeh= (— 1)0(§;3”)7U(§g:n+1) I’(—(ﬁn) ’

k=1

2"sin¢, 39

where ¢,=m(0.£2,,.,1—0.£:,1). Now we simplify the
product of exponents if81). Equation(33) implies

k
bn-k= 2k¢n+;1 2 sm(el,, —&0., 0, k=1,
(40

SO
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n-1

Z ¢k—¢n+2 bn-k

n—1 n-1 Kk

= d’nkzo 24+ kzl 521 2k_577(§%+175— §g+275)

(mod 2r)

n—-1
:[¢n<2“—1>+k21 L CTRTI OB

={pn(2"= 1)+ 7 0(£3.0) — 0(£3.04 1) 1H(mod 2m).
(41)
The product of exponents is thus given by
11 ei¢k=extn<il(21 ¢k)

Using (39) and(42) one can rewritd31) as

(— 1)§§‘(g2+1/2)

&, eh) = 172 S(énsan—Envin-1)
sin2"¢,) .
XSin—q')neXKIZ ¢n) (43)

Further simplification is possible due to the fact thdg
=27(0.£9¢91—0.£11) (mod 277). The final result is

SN on—Enrin-1)

2" sin (0.0, 1410654 1)]
(44)

CI(&L, &)= (&), &)

where the phase factdp is given by
D(&,£4) = V2e T T sin 2" expli 2" by)

LTI ST )

V2

(49)

This formula is an exact expression for the matrix element

(15 of the quantum baker’s map.

B. kth iteration
In this section we prove that for atl<k,,,y,

T Py B*po(B" = 1—0( er_k) : (46)

where the projector®’* and the density operatogs are
defined in Eqs(20) and(21). The first step is to prove that

~ ~ r
Tr[P;’kBpleT]zl—o( 2'"‘)' (47)

By a direct calculation, we obtain
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TP} Bpy-1B"]

_ okt |2n+1Sir[z—(n_r+k)77(0.al_O-Bl)]|_2
lal=r— k+1
|Bl=r—
or = k+171 zrfkfl
_ S0 (u-40-1)77 (48)
77_22[‘*|( u=0 v=0

where the inequality sfrx<x was used. Let. =r —k, and let
Q(s) be the number of different pairaiv), O<u<2-*1,
O0=<v<2%, for whichu—2v=s. It follows that

2r7k+l_1 2rfk_1

> > (2u-4v-1)2
u=0 v=0
L+l_q
= X Q(s)(2s—1)2
s=—2(2--1)
2L+171

- Q(s)+Q(1-s)
- 3 S (49

Using a simple counting argument based on the register prin-
ciple [28], one can show that

1
Q(S)+Q(1—S)=2L“—S+5[1—(—1)5], (50)
from which one obtains
L+1_ L_q L_
’ < 1 Q9+ Q(1-s) 22 2-t1-s 221(4t 12
$=1 (2s—1)2 =1 (2s—1)? =1
L
=2t W2—0(2L> (51)
where we have used the relations
2k 2L
1 L
2:_ L —ol —
E(zs 1) 2=g+o(2h), 2 551 0(2L).
(52

%ombining Eqs(48), (49) and (51), we obtain Eq.(47) as

required. We now rewrite Eq47) in the symmetric form

r
1-o0 Py

and introduce the distance measure between density matrices
induced by the Eucledian norfi27],

T piBpr—1BT]=2"" (53

def

d(p.p")=\Tr(p—p’)*.

This distance measure is unitarily invariant and obeys the
triangle inequality. We will now prove that3) and (54)

imply

(54)

d(pi,BXpo[ BT 1) =0(22""I). (55)
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Using the cyclic property of the trace, we have

d(pi.Bpi1BN) = VTrp2+Trp? 1~ 2 Ti(pyBpy_1B").

(56)
Since Trp2=2"/22"=2"" for anyk,
[d(pkBpy—1BT)1?=2"""1=2 Tr(pBp_1B"), (57)
which, together with Eq(53), implies
d(pi,Bpy-1BT)=0(242" ). (58)

The caseék=1 of (55) follows directly from(58). Assuming
that (55) is true for a given value of and using the unitary
invariance of the distancé4), we have

d(BpB",B  pg[ BT ) =0(2* "), (59
Substitutingk+ 1 for k in Eqg. (58), we get
d(pis1,BpBH =024 D271 ). (60)

Using the triangle inequality for the distance mead, it
follows from (59) and (60) that

d(pkﬂ,Bk“po[é’f]kﬂ)zo(zk/%r\/F)+O(2(k+1)/2fr\/7)
:O(z(k+l)/27r\/F).

By induction, this completes the proof @55 for any k
<Kmax- On the other hand

(61)

)=NTr p2+Tr p2—2 Tr(p,Bpo[ BT1H),
62)

d(py, I:%kpo[ BT]k

hence using Eq55) it follows that

V21 =2 Tr(p BXpo[ BT = 0(242 -7 1),

and finally
r
1-o0 >k | (64)

which is equivalent tq46) as required.

(63

Tr(pkBXpo[BT14)=2""

C. Atypical initial states
In this section, we show that the sta@y'.y?), where 0

CLASSICAL LIMIT IN TERMS OF SYMBOLIC . ..
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Tr[Pf’1é|0fy1.y2><0'y1.y2|é*]
=2 2 GOy Y xy'yog) |2

_° w (65)
_77 v=0 (4U+1)2.

Substitutingt=2v, we have
TPy 'BI0"Y"y*)(0'y"y?(B']

C8+o(4 M & 14(-1)
? =0 2(2t+1)?

4+o(4 ) (20 2 (—1)
= 2s—1)"24+ > ———|.
? szl ( ) tzo (2t+1)?
(66)
Using Eg. (52 and the series representation of Catalan’s
constantG=0.91596526],

i ) (67)
:0(2t+1)2
it follows that
TPy B|0"y . y?)(0"y . yB']
772+8G+ 4 +o(2-7)
= (0] (0]
272
~0.871+0(4" ") +o0(27"). (68)

Since one can treat—r andr as independent variables, this
expression can be made smaller than 0.872 by choasing
—r andr large enough. For the initial stat®'y.y?), the
asymptotic relation(28) is thus violated.
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